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Abstract. I recently proposed a method of bosonization based on the use of coherent states of fermion
composites, whose validity was restricted to smooth structure functions. In the present paper I remove this
limitation and derive results which hold for arbitrary interactions and structure functions. The method
respects all symmetries and in particular fermion number conservation. It reproduces exactly the results of
the pairing model of atomic nuclei and of the BCS model of superconductivity in the number conserving
form of the quasi-chemical equilibrium theory.

PACS. 67.40.Db Quantum statistical theory; ground state, elementary excitations – 71.10.Li Excited
states and pairing interactions in model systems

1 Introduction

There are many finite and infinite fermion systems whose
partition function at low energy is dominated by bosonic
modes. This is always the case when, due to sponta-
neous breaking of a global symmetry, there are Gold-
stone bosons. The effective bosons of these systems can be
charged (fermion number 2), like Cooper pairs in metal,
nuclear and so called color superconductivity [1] or neu-
tral (fermion number 0), like phonons in condensed matter
and pions in hadronic physics.

The structure of composite bosons can also be changed
by varying temperature or control parameters: for in-
stance strongly interacting fermionic atoms in magnetic
traps can form at some temperature molecular pairs which
however condense only at a lower temperature. Moreover
at zero temperature molecular pairs can be transformed
into Cooper pairs by tuning an external magnetic field
which controls a Feshbach resonance. For such systems
two features are most relevant: the role of molecular ver-
sus Cooper pairs and the contribution of non condensed
pairs to the ground state energy [2].

There is an immense literature concerning techniques
to derive effective Hamiltonians for both types of effective
bosons. I will refer to all of them as bosonization methods.
To put my work into perspective I will briefly review the
most relevant step in the development of this subject, but
with no attempt to completeness.

The first approach to bosonization of which I am aware
is due to Bogoliubov [3]. After the BCS work on super-
conductivity Bogoliubov reformulated their theory using
the Fröhlich Hamiltonian [4] of electrons interacting with
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lattice phonons and rederived all their results concerning
ground state properties. He then mapped the Cooper pairs
into effective bosons and found that their dynamics is de-
scribed by the Hamiltonian of a superfluid system of ele-
mentary bosons he studied previously, whose excitations
are called Anderson-Bogoliubov sound. These modes are
related to a nonvanishing contribution of non condensed
pairs to the ground state energy density.

The presence of bosons external to the electron sys-
tem, the lattice phonons, plays an essential role in Bogoli-
ubov’s theory. But in atomic nuclei in which nucleons are
assumed to interact via a nucleon-nucleon potential (with-
out mesons), in gaseous systems of fermionic atoms and in
the BCS model there are no external bosons. In particular
in the BCS model the contribution of noncondensed pairs
to the ground state energy density must vanish since the
BCS solution for the ground state energy-density is exact
in the thermodynamic limit [5], and therefore collective
excitations cannot coincide with the Anderson-Bogoliubov
sound.

The importance of superconductivity in atomic nu-
clei was immediately understood by Bohr Mottelson and
Pines [6] and the method of BCS, which breaks fermion
number conservation was adapted to atomic nuclei [7] for
which this symmetry is important. Immediately supercon-
ductivity of infinite nuclear matter was investigated by
many authors [8], and much later it was suggested that
because of the strong tensor force Cooper pairs in sym-
metric nuclear matter should have the deuteron quantum
numbers [9]. Subsequently a smooth transition from Bose-
Einstein condensation of deuteron-like bound states at low
densities and temperatures to BCS pairing at higher den-
sities was considered [10].
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More recently the superconducting properties of ultra-
small metallic grains have been investigated [11]. In this
context, like for atomic nuclei, it is important a theoretical
method which respects fermion number conservation [12].

There have been many attempts to reformulate the
nuclear Hamiltonian in terms of effective bosons. Beliaev
and Zelewinski [13] made an organic theory of bosoniza-
tion with some points common to the present method, but
their expansion has problems of convergence and violates
fermion number conservation. Later on much in the spirit
of BCS but in a phenomenological approach Arima and
Iachello [14] introduced two different composite bosons,
the s- (spin 0) and d- (spin 2) bosons. Their model, the
Interacting Boson Model, proved extremely successful in
reproducing low energy nuclear properties, but it has not
been derived in a fully satisfactory way from a fundamen-
tal nuclear Hamiltonian. One of the features of the model
to be understood is why can one (mostly) restrict the
boson space to the s- and d-bosons. A justification will
emerge in the method I will present which, even though
is found with a very specific fermion-fermion interaction,
might have a more general validity. I must notice that the
absence in the Interacting Boson Model of bosons with the
deuteron quantum numbers predicted in infinite nuclear
matter might be due to the large size [9] of the deuteron-
like Cooper pairs (very roughly) estimated of about 17 fm,
and the fact that in heavy atomic nuclei the valence shells
of the protons are different from those of neutrons.

In general there are many methods of bosonization.
In 1+1 dimensions there is a wealth of exact results [15].
These results have been extended [16] to many dimensions:
first by use of renormalization group transformations the
fermion space is reduced to a tiny shell around the Fermi
surface, then the problem is essentially reduced to one
dimension by considering only excitations normal to the
Fermi surface. In this way many general properties can be
investigated, but in many cases the effective parameters
introduced by renormalization group transformations are
difficult to evaluate.

Different approach in multidimensional problems are
based on several recipes [17] for mapping of a fermion
model space into a boson space. Such methods respect
fermion number conservation and in principle yield an ex-
act solution to the problem, but in practice one has to
perform a truncation in the fermion space related to a se-
lection of degrees of freedom guided by physical insight
and calculational convenience. One shortcoming of this
procedure is the appearance of “intruders”, namely states
which in spite of their low energy do not appear in the
boson space generated by the mapping [18].

For many-body systems like fermionic gases in mag-
netic traps the most common approaches are based on
numerical simulations or the quasi-chemical equilibrium
theory [19,20], but a true bosonization to my knowledge
has not been achieved.

I developed an approach to bosonization [21] in which
an effective bosonic action is derived by evaluating the
fermion partition function in a basis of coherent states of
fermionic composites. Coherent states offer for composites

the same advantages they give for elementary bosons and
fermions.

After bosonization is achieved the fermion dynamics
can be studied by functional or numerical methods [22].
Analytic calculations are also possible in this approach
both in the path integral and Hamiltonian formalisms, at
the price of an expansion in the inverse of the dimension
of the fermion space. Such an expansion respects fermion
number conservation and therefore can be used also for fi-
nite systems, and in fact its first application was to atomic
nuclei.

An important issue was left over in the original paper.
It concerns a subtraction necessary to perform the expan-
sion in the presence of a condensate. The expansion was
done under the assumption that the structure function
of the condensed bosons be almost constant, a restriction
which can be fulfilled in some atomic nuclei but is not in
most systems, including the BCS model. For this reason
it was not possible to test the method on this theory. This
limitation is removed in the present paper, and general
results are derived for arbitrary fermion-fermion interac-
tions and structure functions of the composites. Actually
the formalism is more general, as it will be illustrated at
the end of Section 3, where the effective bosonic action is
reported. But let me anticipate that it has been applied
also to relativistic field theories, including gauge theories,
at zero [23] and finite fermion number [24]. In the nonrel-
ativistic domain the present method of bosonization finds
its potential applications in finite systems like atomic nu-
clei and small metallic grains and in systems with nonsep-
arable interactions like BEC of fermion gases.

The paper is organized in the following way. To
make it reasonably selfcontained I included some mate-
rial from references [21,23]. In Sections 2 and 3 I outline
the approach and the derivation of the effective bosonic
action [21], whose details can be found in Appendix
D. Section 4 contains the derivation, valid for arbitrary
fermion-fermion interaction, of the effective boson Hamil-
tonian which in Section 5 is expanded in the inverse of the
dimension of the fermion space. The leading order, given
by equation (47), has the form of the Bogoliubov model
of a superfluid boson system.

As a test of the method for finite systems I apply it
in Section 6 to the pairing model of nucleons in a sin-
gle j-level. The spectrum [25] is correctly reproduced in a
form useful for an understanding and justification of the
Interacting Boson Model of nuclear physics.

Section 7 contains an application to infinite systems.
All the results of the BCS model of superconductivity con-
cerning the ground state are exactly reproduced in the
number conserving form of the quasi-chemical equilibrium
theory [19].

In Section 8 I summarize the results and conclude with
an outlook.

As already said in the present paper I do not deal with
neutral composites of particle-hole type, but I will intro-
duce some neutral composites constructed with charged
composites. Particle-hole bosons will be discussed by an
extension of the method in a future work.
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At last I want to mention that the present approach
has been applied also to relativistic field theories [23], in-
cluding gauge theories. There are technical differences, due
to ultraviolet divergencies in relativistic theories, which
make necessary a different way of evaluating the effective
action of the composite bosons. But the essential strategy
remains the same based on the use of coherent states of
composites in the framework of the transfer matrix for-
malism which is close to the Hamiltonian formalism of
nonrelativistic theories. The method has been tested on
models of fermions with large number of flavors and quar-
tic interactions in 3+1 dimensions, exactly reproducing
the gap equation for spontaneous breaking of a discrete
chiral symmetry and the mass of the effective boson ap-
pearing in these models. Moreover the structure function
of the condensed bosons has been determined for the first
time. Its spatial part turns out, surprisingly enough, to be
identical to that of the Cooper pairs of the BCS model.

2 Outline of the approach

Consider the partition function of a system of elementary
(non composite) bosons

Z = tr
[
exp

(
− 1

T
(Helem − µ n̂)

)]
(1)

where T is the temperature, µ the chemical potential and
n̂ the number operator. A sector of n particles can be
selected by the constraint

T
∂

∂µ
ln Z = n. (2)

A functional form of Z can be found by performing the
trace over coherent states [26]

|α〉 = exp

(∑
K

α̂†
K α̂K

)
|0〉, (3)

where K are the particles quantum numbers, α̂†
K their

canonical creation operators and αK holomorphic vari-
ables. Coherent states satisfy the basic or defining equa-
tions

α̂K |α〉 = αK |α〉 (4)

where α̂K are canonical destruction operators. In terms of
these states we can write the identity in the Fock space

I =
∫

dµ(α∗, α)〈α|α〉−1|α〉〈α| (5)

where

dµ(α∗, α) =
∏
K

[
dα∗

KdαK

2πi

]
. (6)

Using this resolution of the identity the trace in the par-
tition function can be evaluated with the result [26]

Z =
∫

dµ(α∗, α) exp [−Selem(α∗, α)] . (7)

In the above equation Selem is the action of the particles

Selem = τ
∑

t

{−α∗
t∇tαt−1 + Helem(α∗

t , αt−1)

−µ α∗
t αt−1} , (8)

where
∇t f =

1
τ

(ft+1 − ft) , (9)

and Helem(â†, â) is the Hamiltonian in normal order.
In a system of fermions whose low energy excitations

are dominated by fermion composites I can restrict the
trace to these composites. The restricted partition func-
tion can be written

ZC = tr
[
PC exp

(
− 1

T
(HF − µF n̂F )

)]
(10)

where PC is a projection operator in the subspace of the
composites. By analogy to elementary bosons I assume for
it the approximate expression

P =
∫

dβ∗ dβ

2πi
〈β|β〉−1|β〉〈β| (11)

where β∗, β are holomorfic variables and |β〉 coherent
states of composites

|β〉 = | exp
(∑

J

βJB̂†
J

)
〉. (12)

The creation operators of composites with fermion num-
ber 2 are

B̂†
J =

1
2
√

ΩJ

∑
m1,m2

ĉ†m1

(
B†

J

)
m1,m2

ĉ†m2
, (13)

while those of fermion number zero are

Φ̂†
J =

1√
ΩJ

∑
m1m2

ĉ†m1

(
Φ†

J

)
m1m2

ĉm2 . (14)

The ĉ†’s are fermion creation operators, m and J , rep-
resent all the fermion and boson quantum numbers and
ΩJ is the index of nilpotency of the J-composite, which
is defined as the largest integer such that

(
B̂J

)ΩJ �= 0. (15)

I will assume for simplicity the index of nilpotency equal
to half the dimension of the fermion space for all the com-
posites. The matrices BJ , ΦJ are the structure functions
of the composites, which must be determined by a varia-
tional calculation. Only the solutions with high index of
nilpotency are acceptable.

I call the states |β〉 coherent because they share with
coherent states of elementary bosons the property of a
fixed phase relation among the components with different
number of composites. But the basic property of coherent
states cannot be fulfilled. Indeed

B̂J |β〉 �= βJ |β〉. (16)
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This is a consequence of the composites commutation re-
lations, which are not canonical

[
B̂J , B̂†

K

]
=

1
2
Tr (BJB†

K) − ĉ†B†
KBJ ĉ . (17)

In states with a number of composites n � Ω, the above
equations can be approximately satisfied provided the
structure functions are sufficiently smooth. Indeed in such
a case the last term is of order n/Ω. But in states with
n ∼ Ω, it is not possible to satisfy them even with an ab-
solute freedom about the form of the structure functions
(which are instead determined by the dynamics). The best
we can do [21] is to satisfy them for states with n+k com-
posites, for fixed n ∼ Ω and |k| � Ω.

As stated in the Introduction, in the present work I
will study only composites with fermion number 2. The
properties of the operator P are reported in Appendix C
in the form derived in reference [23].

The trace can be exactly evaluated [21] (see below)
yielding a functional form of ZC

ZC =
∫ [

dβ∗dβ

2πi

]
exp (−Seff(β∗, β)) . (18)

The expression of the effective bosonic action Seff is re-
ported in the next section. This result holds under the
only physical assumption of boson dominance and the ap-
proximation adopted for P .

In many-body physics it is often used the Hamiltonian
formalism. The Hamiltonian of the effective bosons, HB,
cannot be read directly from the effective action, because
Seff(β∗, β) does not have the form of an action of elemen-
tary bosons. Indeed it contains anomalous time deriva-
tive terms, anomalous couplings of the chemical potential
and nonpolynomial interactions, which are all features of
compositeness. Therefore it has been necessary to devise
an appropriate procedure to derive HB , which is given in
terms of boson operators b̂†, b̂, (not to be confused with
the composite operators B̂†, B̂) satisfying canonical com-
mutation relations, so that

ZC = tr
(
− 1

T
(HB − µBn̂)

)
. (19)

µB is the boson chemical potential and n̂ the boson num-
ber operator.

HB has a closed form but, for a practical use, it is
necessary to perform an expansion in inverse powers of
the index of nilpotency Ω.

3 The effective bosonic action

The most general fermion-fermion interaction can be writ-
ten as a sum of separable terms, so that the fermion
Hamiltonian can be given the form

HF = ĉ†h0 ĉ −
∑
K

gK
1
2

ĉ†F †
K ĉ†

1
2

ĉ FK ĉ. (20)

The one-body term includes the single-particle energy
with matrix e, the fermion chemical potential µF and any
single-particle interaction with external fields included in
the matrix M

h0 = e − µF + M. (21)

The matrices FK are the form factors of the potential,
normalized according to

tr(F †
K1

FK2) = 2 ΩδK1K2 . (22)

In order to evaluate ZC I divide the inverse temperature
in N0 intervals of size τ

T =
1

N0τ
. (23)

Then as shown in Appendix D the Euclidean effective ac-
tion is

Seff(β∗, β) = τ
∑

t

1
2
tr
{

1
τ

ln
[
11 + τ RB†∇tB

]

+2RB†hB −
∑
K

gK

[
(R − 1)F †

KFK

+(RB†F †
K)

1
2
tr(RFKB) − RB†F †

KRFKB
]}

(24)

where

h = h0 −
∑
K

gKF †
KFK (25)

B =
1√
Ω

∑
J

βJB†
J =

1√
Ω

β · B† (26)

R =
(
11 + B†B)−1

(27)

Notice in the third line a trace inside the trace. The vari-
ables β∗, β are always understood at times t, t − 1 respec-
tively. Explicitly, for instance

Rt =
(
11 + B†

tBt−1

)−1

. (28)

Seff has a global U(1) symmetry which implies boson con-
servation.

The fermionic interactions with external fields appear
in the bosonic terms which involve the matrix M (appear-
ing in h).

The dynamical problem of the interacting (composite)
bosons can be solved within the path integral formalism.
Part of this problem is the determination of the structure
matrices BJ which can be done by a variational calcu-
lation. The present approach then shares two important
features with variational methods: the restriction of the
fermion space to a subspace, the space of the compos-
ites, and the variational determination of the structure
functions. But unlike standard variational methods ex-
cited states are treated at the same time and on the same
footing as the ground state.

Before showing a concrete way of application, I want to
list some characteristic features of the present formalism:
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(1) It can be used with interactions quartic as well
quadratic in the fermionic fields. The latter ones in-
clude electromagnetic and phonon interactions in the
nonrelativistic domain, and renormalizable relativistic
field theories in 3+1 dimensions [23,24]. In the ap-
plication to these theories the main change is the re-
placement of the exponential of the Hamiltonian by
the transfer matrix.

(2) It can be extended to cases in which not all the
fermions bosonize, like odd atomic nuclei, systems of
fermions and composite bosons in quasichemical equi-
librium, and relativistic field theories at finite fermion
density. This latter case has already been studied for
QCD at finite temperature and baryon density [24],
and one can see that the procedure adopted can easily
be applied to nonrelativistic systems as well.

(3) It allows the treatment of different coexisting compos-
ite bosons, for instance Cooper and molecular pairs. In
such a case the equations for the structure functions
of the composites should have more solutions, possibly
with the same quantum numbers.

(4) It provides the structure functions of the composites,
and therefore their effective coupling to other fields,
like the electromagnetic field.

(5) It allows the introduction of composites with quan-
tum numbers different from those of the form factors
of the potential. An example is given in Section 6:
with a purely pairing interaction in atomic nuclei, one
needs also bosons with angular momentum different
from zero.

4 The effective boson Hamiltonian

As already said the derivation of the boson Hamiltonian
is not straightforward, because Seff differs in many re-
spects from the action of elementary bosons shown in
equation (8). I notice that in Seff

(i) the time derivative term is not canonical;
(ii) the coupling of the chemical potential (appearing in h)

is also noncanonical;
(iii) there are non polynomial interactions because of the

R-function. This function becomes singular, as it will
become clear in the sequel, when the number of bosons
is of order Ω, reflecting the Pauli principle.

Let us start by examining the features of compositeness
when the number of bosons is much smaller than Ω. Since
the expectation value of β∗ ·β is of the order of the number
of bosons, in this case we can perform an expansion of
logarithm and R-function in inverse powers of Ω. From
the logarithm I get

1
2τ

tr ln
[
11 + τRB†∇tB

]
=

1
2
tr
(B†∇tB

)

− 1
4
tr
[B†B B†∇tB

]
+ ... (29)

The first term can be made canonical by normalizing the
boson form factors according to

tr(B†
J BK) = 2Ω δJ,K . (30)

The other terms are then of order Ω−1. Notice that the di-
agonal condition is only a matter of normalization, but the
off diagonal one must be compatible with the dynamics,
and a redefinition of the β’s can be necessary to get it.

Expanding the R-function I get the following couplings
of the fermion chemical potential

µF tr
[
B†

tBt−1 − 1
2
(B†

tBt−1)2 + ...

]
. (31)

Only the first term is canonical. However the anomalous
couplings can be eliminated to order Ω−1 by a redefinition
of the chemical potential [21], so that in the case of a small
number of bosons the Hamiltonian can be derived without
difficulty.

But when the number of bosons is of order Ω, an ex-
pansion of logarithm and R-function can be performed
only after an appropriate subtraction, as explained in Sec-
tion 5. I assume, and I will verify later, that after such a
subtraction the anomalous time derivative terms be of or-
der Ω−1. Then ZC can be written in terms of an auxiliary
Hamiltonian H ′ as a trace in a boson space

ZC = tr exp
(
− 1

T
H ′

)
. (32)

H ′ is obtained from Seff by omitting the time derivative
term, and replacing the variables β∗, β by corresponding
creation-annihilation operators b̂†, b̂. These satisfy canon-
ical commutation relations and should not be confused
with the corresponding operators B̂†, B̂ for the compos-
ites

H ′ = :
1
2
tr

{
2R̂ B̂†h B̂ −

∑
K

gK

[(
R̂ − 1

)
F †

KFK

+R̂ B̂†F †
K

1
2
tr(R̂ FK B̂) −R̂ B̂†F †

KR̂ FK B̂
]}

. (33)

The colons denote normal ordering and

B̂ =
1√
Ω

b̂ · B†

R̂ =
[
11 +

1
Ω

b̂† · B b̂ · B†
]−1

. (34)

From H ′ I will derive in the next section the boson
Hamiltonian HB , equation (55). I must notice that the
case of a number of bosons much smaller than Ω cannot
be retrieved from the above equations. The reason is that
in the former case µF = O(Ω), while µF = O(Ω0) in the
case n ∼ Ω.

5 The Ω−1 expansion

A rather general way to perform the subtraction necessary
for the Ω−1 expansion is to write the operator R̂ in the
form

R̂ = (11 + η̂)−1 Γ (35)
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where

η̂ =
1
Ω

Γ
∑

K1K2

(
b̂†K1

b̂K2 − r2
K1K2

)
BK1B

†
K2

Γ =

[
11 +

1
Ω

∑
K1K2

r2
K1K2

BK1B
†
K2

]−1

. (36)

Notice that R̂ can be expanded with respect to η̂, while
Γ , which however does not contain creation-annihilation
operators, must be treated exactly. The parameters r2

K1K2

are related to the expectation values 〈b̂†K1
b̂K2〉. It is im-

portant to observe that such expectation values do not
break boson (and therefore fermion) number conservation,
but will in general break other symmetries, like rotational
invariance in deformed atomic nuclei. Their determina-
tion allows therefore to study thermodynamic or quantum
phase transitions like breaking of rotational symmetry by
axial or triaxial shapes in atomic nuclei [27].

For the sake of simplicity in [21] I restricted myself
to cases in which the structure functions are almost con-
stant, which justifies a subtraction independent of them.
The formalism was then tested in the case of the so called
pairing model [25]. The ground state energy was exactly
reproduced, but the spectrum of excitations was not stud-
ied because the boson Hamiltonian contains couplings of
all the bosons among themselves and was not solved. As
we will see such couplings are an artifact due to the inad-
equacy of that subtraction.

5.1 Subtraction in the presence of an s-condensate

In the present paper I remove the restriction that the form
factors should be almost constant, and consider the case in
which a condensation occurs in a single quantum mode,
called the s mode, whose quantum numbers will be de-
noted by “zero”

r2
K1K2

= δK1,0 δK2,0 r2. (37)

By condensation of the s-boson I understand that the oc-
cupation number of this mode is of order Ω. The terms
appearing in η̂ can then be classified according to

(b̂†0b̂0 − r2)B†
0B0 +

∑
K1,K2 �=0

b̂†K1
b̂K2 BK1 B†

K2
∼ Ω0

b̂†0 B0

∑
K �=0

b̂K B†
K ∼

√
Ω, (38)

provided the sum of the occupation numbers of noncon-
densed modes is much smaller than Ω and the struc-
ture matrices are of order Ω0. Under these conditions one
subtraction is sufficient, otherwise more subtractions are
needed. Expansion of time derivative terms in Seff ac-
cording to this classification, neglecting contributions of

order Ω−1 gives

1
2τ

tr
[
ln
(
1 + B†

tBt

)
− ln

(
1 + B†

tBt−1

)]
=

1
2Ω

trC00 β∗
0∇tβ0 +

∑
K1K2

1
2Ω

tr [CK1K2

− 1
Ω

β∗
0β0 CK10C0K2

]
β∗

K1
∇tβK2 (39)

where
CK1K2 = Γ BK1B

†
K2

. (40)

In the derivation of the above equation I assumed
trCK0 = 0, forK �= 0 and I disregarded the fluctuations
of the product β∗

0β∗
0 , whose contribution is of order Ω−1,

so that terms of the form

1
2Ω2

tr(C0K1C0K2)β
∗
0β∗

0∇t(βK1βK2) (41)

are total time derivatives and do not contribute to the
action. Then replacing β∗

0β0 by n, the number of bosons,
the temporal terms become canonical if I impose the nor-
malizations

1
2Ω

trC00 = 1,

1
2Ω

tr
[
CK1K2 −

n

Ω
CK10C0K2

]
= δK1K2 ,

K1, K2 �= 0. (42)

It is worth while noticing that the ground state wave func-
tion of free fermions is included in the class of states which
are assumed to dominate the partition function, so that
the variational evaluation of the structure function will tell
whether an actual condensation will occur or not. Indeed
if I choose

(B0B
†
0)m1m2 = ξ δm1m2θ(mF − m1) (43)

where θ is the step function and mF are the fermion quan-
tum numbers at the Fermi surface, for large ξ the normal-
ization gives

r2 =
1
2
nF , (44)

and all the coherent states are dominated by the term with
nF fermions

|β〉 ∼ (β ξ)
1
2 nF

mF∏
m=1

c†m. (45)

5.2 Ω−1 expansion in the presence of an s condensate

To proceed with the expansion of the boson Hamiltonian it
is necessary to know how the coupling constants gK scale
with Ω. For infinite systems, since Ω → ∞, to get finite
energies we must require gK ∼ Ω−1. Such a behavior is
also acceptable for many finite systems and I assume it
in the following. As a consequence the fermion chemical
potential µF is of order Ω0.
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At this point it is convenient to introduce the notations

ν =
r2

Ω
, n̂0 = b̂†0b̂0. (46)

Neglecting contributions of order Ω−1 I get

H ′ ∼ EC + :

⎧⎨
⎩E0 n̂0 +

1
2

∑
K1,K2 �=0

[(
EK1K2 b̂†K1

b̂K2

+
1
Ω
VK1,K2 b̂†K1

b̂†K2
b̂0b̂0

)
+ H.c.

]}
:, (47)

where EC is a c-number and H.c. represents the Hermitian
conjugate of the operator in the round brackets. The co-
efficients E and V are functions of the operator n̂0, which
explains the presence of normal ordering.

In many cases the double sum over K1, K2 reduces to
a single sum, K2 resulting conjugate to K1 according to a
one-to-one correspondence K2 = K̃1

H ′ ∼ EC + :

⎧⎨
⎩E0 n̂0 +

∑
K �=0

[
EK b̂†K b̂K

+
1

2 Ω
VK b̂†K b̂†

K̃
b̂0b̂0 + H.c.

]}
: . (48)

From their general expression, reported in Appendix E, we
see that EC ∼ Ω while the operators EK ,VK take values
of order Ω0.

H ′ has the form of the Bogoliubov model of super-
fluidity, with an important qualification to be discussed
below. Because of the absence of terms involving three or
four operators of bosons out of the condensate, H ′ can be
approximately (see below) diagonalized introducing the
phonon operators

ÂK =
1√
n

b̂K b̂†0, Â†
K =

1√
n

b̂†K b̂0. (49)

In terms of these operators

H ′ = EC + δEC + : E0n̂0 : +
∑
K �=0

EKÂ†
KÂK (50)

where

δEC =
1
2

∑
K �=0

(EK − EK)

EK =

√
E2

K −
( n

Ω
VK

)2

. (51)

The average number of noncondensed bosons in the
ground state is [28]

〈
∑
K �=0

b̂†K b̂K〉 =
1
2

∑
K �=0

( EK

EK
− 1

)
. (52)

Approximating the commutation relations of the phonon
operators by canonical ones introduces errors of order Ω−1

only if this expectation value is much smaller than Ω.
This condition is also necessary for the classification of
equation (38) to hold. Now even though the operators
EK and VK take values of order Ω0, so that also the
phonon energies EK are of this order, it is well possi-
ble that 〈∑K �=0 b̂†K b̂K〉 = O(Ω). In such a case a unique
subtraction is not sufficient and farther subtractions are
necessary.

Now the qualification mentioned above. As reminded
in the Introduction in his reformulation of the theory of su-
perconductivity starting from the Fröhlich Hamiltonian [4]
of electrons interacting with lattice phonons, Bogoliubov
found an effective Hamiltonian essentially equal to that he
studied previously for superfluid bosonic systems as far as
the bosonic excitations are concerned. The coefficients EK

and VK of this Hamiltonian are such [28] that the excita-
tion spectrum is

EK ∼ |K|, |K| → 0. (53)

As a consequence 〈∑K �=0 b̂†K b̂K〉, δEC = O(Ω). Such a re-
sult cannot hold for the BCS model, because the expres-
sion of the ground state energy density derived by BCS is
exact [5].

5.3 Determination of subtraction parameter
and fermion chemical potential

In the determination of the subtraction parameters I meet
with a subtlety. H ′ commutes with the boson number
operator, so I can select sectors with a given number of
bosons. But I am not guaranteed that these bosons carry
fermion number 2, because of the noncanonical coupling
of the chemical potential. This fundamental property can
be enforced just exploiting the parameters introduced by
the subtractions. Indeed, denoting by E′

0(n) the lowest
eigenvalue of H ′ in the sector of n bosons, I require that
E′

0(n) be the lowest eigenvalue for n = 1
2 nF

∂

∂n
E′

0(n) = 0, for n =
1
2
nF . (54)

The above equation, together with the condition 2 on the
fermion number, determines one of the parameters r and
the fermion chemical potential µF as functions of the num-
ber of bosons, r = r(n), µF = µF (n), ensuring that these
bosons carry fermion number 2. The boson Hamiltonian
in the sector of n bosons is finally

HB(n) = H ′(r, µF ) + 2 µF n. (55)

It depends on n explicitly and through the dependence
on n of r, µF . Therefore also the matrices BJ , the form
factors of the bosons, will depend on n, namely on the
number of fermions.

Notice that H ′ provides a mapping of the fermion in-
teractions with external fields

c†Mc →:
1
2
tr
{

Γ̂

[
B̂†MB̂ +

1
2
[B̂†B̂,M]+

]}
: . (56)
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The ground state energy of the auxiliary Hamiltonian in
a state of n bosons is

E′
0(n) = EC + δEC + 〈n, o| : E0(n̂0) n̂0 : |n, o〉. (57)

Taking normal ordering into account

〈n, o| : E0(n̂0) n̂0 : |n, o〉 = E0(n0)n0 (58)

where
E0(n0) = E0(n0) + 2n0g0D00D0000. (59)

n0 is the number of condensed bosons in a state of n
bosons and the quantities DK1K2... are defined in Ap-
pendix B. The constraints 2 and 54 for subtraction pa-
rameter and chemical potential are

∂E′
0(n)

∂µF
= −2

{
r2 1

2Ω
tr C00 +

(
n0 − r2

) 1
2Ω

tr [ΓC00]
}

+
∂δEC

∂µF
+ 2n = 0

∂E′
0(n)

∂n
=

∂

∂n

[E0(n0)n0

]
+

∂δEC

∂n
= 0. (60)

I have two equations and three unknowns: µF , r2, n0. But
I remind that the Ω−1 expansion holds under the assump-
tion

n − n0 = O(Ω0), (61)
otherwise further subtractions are necessary. I assume,
and I will discuss later when this assumption holds true

∂

∂µF
δEC = O(Ω0),

∂

∂n
δEC = O(Ω−1). (62)

Then the first equation with the normalization condi-
tion (42) gives

r2 = n + O(Ω0), (63)
and using this result in the second equation I get

1
2Ω

tr
[
Γ 2B0(e − µF )B†

0

]
+ 2ν Ωg0D00D0000

−Ωg0D
2
00 = O(Ω−1) (64)

which determines µF .
I can finally write the ground state eigenvalue of HB

E0(n) = E′
0(n) + 2nµF =

{
1
Ω

tr
[
ΓB0 eB†

0

]

−Ωg0D
2
00

}
n + O(Ω0). (65)

To evaluate the excitation energies in a state with f
phonons I need the expectation value

〈n, f | : E0(n̂0) n̂0 : |n, f〉 = E0(n0 − f)(n0 − f)

∼ E0(n0) − ∂

∂n0

[E0(n0)n0

]
f. (66)

According to equation (60) the coefficient of f is of order
Ω−1, so that to order Ω0 this term does not depend on f .

The excitation energies of states containing f phonons
are therefore

EK1K2...Kf
= EK1 + EK2 ... + EKf

. (67)

6 Finite systems: the pairing model
for nucleons in a single j-shell

I consider a system of nucleons in a single j-shell, in which
case the only fermion quantum number is the third com-
ponent of angular momentum m and the index of nilpo-
tency Ω is equal to j+1/2. Composite bosons are labelled
by the angular momentum L and its third component M :
K ≡ (L, M). The form factors of the potential are propor-
tional to Clebsh-Gordan coefficients. With the normaliza-
tion of equation (22) they are

(FLM )m1,m2 =
√

2Ω〈jm1jm2|LM〉. (68)

It is not necessary to solve the variational equations
for the boson form factors, since because of rotational
invariance they also must be proportional to the Clebsh-
Gordan coefficients

BLM = αLFLM . (69)

As a further simplification I restrict myself to the pair-
ing model, namely I assume the single-particle energy to
vanish and the interaction to be a pure pairing potential
(gK = 0 for K �= 0 ). I will evaluate the excitation energies
to order Ω0 but the ground state energy only to order Ω
since it was already evaluated to order Ω0 in [21].

I can immediately find the normalizations

α0 =
1√

1 − ν
, αL =

1
1 − ν

, L �= 0 (70)

and evaluate the coefficient of H ′. I find that
L̃ = L, M̃ = −M , and

EC = 2hΩν2 + Ωg0 ν

E0 = [2h− g0(Ω + 2 + 2ν] (1 − ν)

ELM = [2h(1 − 2ρ0) + 4Ωg0ρ0(1 − ρ0)]

VLM = (−1)M2 [−2h + Ωg0(1 − 2ρ0)] . (71)

where ρ0 = n0/Ω.
Equations (63) and (64) give

r2 = n + O(Ω0)

µF = −1
2
g0 (Ω − n) + O(Ω−1). (72)

With these values

VLM = O(Ω−1), ELM = Ωg0 + O(Ω−1). (73)

Since the number of L-modes is of order Ω2, namely
δEC = O(Ω0), the effective boson Hamiltonian in the sec-
tor of 2n fermions is

HB(n) =
[−Ωg0n + g0n

2 + O(Ω0)
]

+

[
Ωg0

∑
LM

b̂†LM b̂LM + O(Ω−1)

]
. (74)
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This is the correct result [25] in the required approxima-
tion. It is to be noted that noncondensed bosons have all
the same energy ELM = Ωg0, so that the spectrum de-
pends only on their total number, and not on their distri-
bution in different L-states. This property makes consis-
tent the truncation of the boson space to a few modes, and
as a consequence we can restrict the boson model space
to only one of them, the d-boson in the Interacting Boson
Model.

The decoupling of different noncondensed bosons is
achieved by means of the subtraction of equation (37).
With a subtraction independent of the structure functions
all the modes are coupled, so that the above properties
might have been found only after solution of the resulting
boson Hamiltonian.

7 Infinite systems: superconductors
and the BCS model

I consider an infinite system of fermions whose quan-
tum numbers are spin and momentum, m ≡ (s, p), and
I parametrize the potential form factors according to

(FK)s1p1s2p2
= εs1,s2δp1+p2,K fp1− 1

2K(K). (75)

For simplicity I restrict myself to bosons of spin zero and
momentum K and parametrize their form factors accord-
ing to

(BK)s1p1,s2p2 = εs1,s2δp1+p2,K φp1− 1
2 K(K). (76)

Since form factor and structure function are fully antisym-
metric

fq(K) = f−q(K), φq(K) = φ−q(K). (77)

The structure functions are subject to the normalizations
of equations (42)

1
Ω

∑
p

Γp φ2
p = 1

1
Ω

∑
p

Γ 2
p φ2

p− 1
2 K(K) = 1, K �= 0 (78)

where
φp = φp(0), Γp =

(
1 + ν φ2

p

)−1
. (79)

For infinite systems neglecting terms of order Ω0 in the
evaluation of the ground state energy density does not pro-
duce any error in thermodynamic limit. So I will neglect
such terms. Therefore the ground state energy is

E0 = δEC +
{

1
Ω

tr
[
ΓB0 e B†

0

]
− Ωg0D

2
00

}
n

= δEC +

⎧⎨
⎩
∑

p

2 ep Γpφ
2
p − g0

[∑
p

Γpφpfp

]2
⎫⎬
⎭

n

Ω
.

(80)

The expressions of δEC , EK and VK can be easily eval-
uated inserting the definitions of potential form factors
and boson structure functions in the equations reported
in Appendix B.

7.1 BCS model

For a general potential δEC �= O(Ω0), and as already said
consistency of the Ω−1 expansion requires further sub-
tractions. But a great simplification must arise for a pure
pairing interaction, gK = 0 for K �= 0, because then as re-
minded previously the contribution of δEC to the energy
per particle must vanish in the thermodynamic limit, or
in other words δEC must be of order Ω0. Therefore I as-
sume δEC = O(Ω0) and I will verify a posteriori that
this is true. I also assume φp to be real and I minimize
the ground state energy imposing the normalization con-
straint by the Lagrange multiplier λ

∂

φq

⎧⎨
⎩
∑

p

2(ep − λ)Γpφ
2
p − g0

[∑
p

Γpφpfp

]2
⎫⎬
⎭ = 0. (81)

I thus get the gap equation

(ep − λ)
√

νφp =
1
2
� (1 − ν φ2

p)fp (82)

where
� = g0

√
ν
∑

p

Γp φp fp (83)

is the gap function. These are exactly the results of the
quasi-chemical equilibrium theory, equation IV(1.17) of
reference [29]. In this connection I remind that this the-
ory, unlike the BCS theory, is fermion number conserving
like the present approach.

Following [29] I then find λ = epF , pF being the Fermi
momentum of the system. Next I evaluate the coefficient
of the quartic boson term

VK = − 2
Ω

∑
p

{
Γ 2

p Γp−K [2(ep − µF )φp

− 1√
ν

(
1 − νφ2

p

)� fp

]
φp−K

×φp− 1
2K(K)φp− 1

2K(−K)
}

+ O(Ω−1). (84)

In the above equation there appears the fermion chemical
potential µF which is determined by equation (64). Using
the gap equation I find µF = λ. Then using again the gap
equation in the expression of VK I find that VK = O(Ω−1)
and therefore δEC is at most O(Ω0). For a pure pair-
ing interaction the contribution to the ground state energy
per particle of noncondensed pairs vanishes, in agreement
with [5], and my assumption about δEC is justified.

To get analytic expressions I assume ep to be the free
fermion energy and the form factor of the potential to have
the schematic form of BCS

ep =
1

2m
p2, fp = θ(2mω − |p2 − p2

F |). (85)
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θ is the step function and ω a cutoff energy (identified
with the Debye cutoff energy of lattice waves in metal
superconductivity).

The solution of the gap equation is [29]

φp =
1
ν

(√
1 + ξ2

p − ξp

)
(86)

where

ξp =
1
�

1
2 m

(p2 − p2
F ). (87)

8 Summary and outlook

I extended the original formalism for boson domi-
nance based on coherent composite states. The exten-
sion amounts to perform a subtraction proportional to the
structure function of the condensed boson. The results ob-
tained have a validity restricted only by the assumption
that condensation occurs in a singlet state and that the
coupling constants scale according to gK ∼ Ω−1. In par-
ticular, since fermion number is conserved, they hold for
finite systems. Therefore the present bosonization method
can find applications not only in the presence of important
nonpairing interactions, but also to account for finiteness
effects in atomic nuclei and small metallic grains.

The general expression of the bosonic Hamiltonian
contains a classical part δEC which couples the form fac-
tors of all the bosons. The theory becomes much simpler
for pure pairing interactions, because δEC is negligible,
and I tested it on two paradigmatic models.

As an example of finite systems I considered the pair-
ing model of nucleons in a single j-shell and I reproduced
its bosonic spectrum in a form useful to understand and
justify the Interacting Boson Model. Indeed I find that a
boson space made of the s- and d-bosons is sufficient to re-
produce the spectrum, which is not changed by the addition
of other bosons. For the fermionic part of the spectrum one
must use the technique developed in [24]. Needless to say
the bosonization of the pairing model has been obtained in
many ways, but I emphasize that the present formulation
holds in a framework valid for arbitrary fermion-fermion
interactions.

I then applied this method to the BCS model of super-
conductivity reproducing exactly its ground state proper-
ties in the form of the quasi-chemical equilibrium theory.

Two important issues are left for future work. The first
one concerns the determination of structure functions for
a general interaction and noncondensed bosons. I keep in
mind in this connection the possibility of different struc-
ture functions with the same quantum number K. They
might for instance be associated with intruders or coex-
isting molecular and Cooper pairs.

The second one concerns phonons, namely neutral
bosons describing polarization effects [30]. They must nec-
essarily be included in many cases [31] and certainly in the
presence of particle-hole terms in the fermion-fermion in-
teraction.

This work has been partially supported by EEC under the
contract MRTN-CT-2004-005104.

Appendix A: Basic formulae in Berezin
integrals

The definition of the Berezin integral for a single
Grassmann variable is∫

dγ(aγ + b) = a, (A.1)

the generalization to many variables being obvious. For a
change of variables

γi = γi(γ′) (A.2)

in a multiple integral we have

∫ ∏
i

(dγi)f(γ) =
(

det
∂γh

∂γ′
k

)−1 ∫ ∏
i

(dγ′
i)f(γ′). (A.3)

Notice the appearance of the inverse of the jacobian, con-
trary to the case of ordinary variables.

Gaussian integrals can be evaluated exactly, like for
ordinary variables. There are two types of such integrals

∫ ∏
h

(dγ∗
hdγh) exp

∑
ij

γ∗
i Mijγj = detM (A.4)

∫ ∏
h

(dγh) exp
∑
ij

1
2
γiAijγj = PfA (A.5)

where PfA is called the pfaffian [32] of A. The following
algebraic identity holds

(PfA)2 = detA. (A.6)

Appendix B: Inner products of composite
states

Let us consider the case of only one composite. To evaluate
the inner product of coherent states I use the identity
operator in the fermion Fock space

I =
∫

dγ∗dγ〈γ|γ〉−1|γ〉〈γ| (B.1)

where the γ∗, γ are Grassmann variables and |γ〉 coherent
states [32]

|γ〉 = exp(−γ ĉ†)〉. (B.2)

I then have

〈β1|β〉 = 〈β1|I|β〉 =
∫

dγ∗dγ exp(−γ∗γ)〈β1|γ〉〈γ|β〉.
(B.3)
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The matrix element 〈β1|γ〉 can be evaluated using the
defining property of coherent states

ĉ|γ〉 = γ|γ〉 (B.4)

with the result

〈β1|γ〉 = exp
(

1
2
√

Ω
β∗

1γBγ

)
. (B.5)

Therefore 〈β1|β〉 becomes

〈β1|β〉 =
∫

dγ∗dγ E(γ∗, γ, β∗
1 , β), (B.6)

where the function E is

E(γ∗, γ, β∗, β) = exp
(
−γ∗γ +

1
2
√

Ω
β∗ γ B γ

+
1

2
√

Ω
β γ∗B†γ∗

)
. (B.7)

By the change of variables

γ′ = γ∗ −
√

Ω

β
(B†)−1γ (B.8)

the integral is factorized according to

〈β1|β〉 =
∫

dγ′ exp
(

1
2
√

Ω
γ′ β B† γ′

)

×
∫

dγ exp
[
1
2
γ

(√
Ω
(
βB†)−1

+
1√
Ω

β∗
1B

)
γ

]
.

The factors are of the form A.5, so that finally

〈β1|β〉 =
[
det

(
1√
Ω

βB†
)] 1

2 [
det

(√
Ω(βB†)−1

+
1√
Ω

β∗
1B

)] 1
2

= det
[
11 +

1√
Ω

β β∗
1B†B

] 1
2

. (B.9)

Appendix C: The operator P
In this Appendix I show that the operator P of equa-
tion (11) approximates PC to leading order in an expan-
sion in the inverse of the index of nilpotency.

For the sake of simplicity I consider the case of a unique
composite. Then

PC =
Ω∑

n=0

1
νn

|
(
B̂†

)n

|0〉〈0|B̂n| (C.1)

where
νn = 〈0|B̂n|

(
B̂†

)n

|0〉. (C.2)

I must then prove that

〈0|B̂m P(B̂†)n|0〉 ∼ 〈0|B̂m|(B̂†)n|0〉 = δm,nνm. (C.3)

These equations are generated by the following ones

〈β′|P|β′′〉 ∼ 〈β′|β′′〉 (C.4)

taking derivatives with respect to β′∗, β′′ and setting these
variables equal to zero. To simplify the formulae I adopt
a slightly different definition of composites

B̂ =
1
2

∑
m1m2

ĉ†m1
Bm1m2 ĉm2 . (C.5)

The right and left hand sides of Eq. (C.4) are

〈β′|P|β′′〉 =
∫

dβ∗dβ

2πi
exp [−E(β∗, β, β′∗, β′′)]

〈β′|β′′〉 = exp
[
Tr ln(1 + β′∗β′′BB†)

]
(C.6)

where

E(β∗, β, β′∗, β′′) = Tr
[
ln(1 + β∗βBB†)

− ln(1 + β′∗βBB†) − ln(1 + β∗β′′BB†)
]
. (C.7)

I evaluate the integral by the saddle point method. The
saddle point equations are

(β − β′′)Tr
BB†

(1 + β∗βBB†)(1 + β∗β′′BB†)
= 0

(β∗ − β′∗)Tr
BB†

(1 + β∗βBB†)(1 + β′∗βBB†)
= 0(C.8)

with solutions
β = β′′, β

∗
= β′∗. (C.9)

At the saddle point

E(β
∗
, β, β′∗, β′′) = −Tr ln(1 + β′∗β′′BB†). (C.10)

Moreover

∂2E
∂β∗∂β∗ |β=β′′,β∗

=β′∗ =
∂2E
∂ξ∂ξ

|β=β′′,β∗
=β′∗ = 0

∂2E
∂β∗∂β

|β=β′′,β∗
=β′∗ = Tr

BB†

(1 + β′∗β′′BB†)2
. (C.11)

In conclusion

〈β′|P|β”〉 ∼ 〈β′|β”〉
[
Tr

BB†

(1 + β′∗β′′BB†)2

]−1

. (C.12)

The desired result follows if we assume

Tr
(
B†B

)n ∼ Ω−n+1. (C.13)

It is then easy to prove also the idempotency property of
projectors

P ∼ P2. (C.14)
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Appendix D: Derivation of the effective action

For the following manipulations we need the Hamiltonian
in antinormal form

H =
1
2
tr(h+h0)−ĉ hT ĉ†−

∑
K

gK
1
2

ĉFK ĉ
1
2

ĉ†F †
K ĉ† (D.1)

where the upper script T means “transposed” and h was
given in equation (25). Now we must evaluate the matrix
element 〈βt| exp(−τH)|βt−1〉. To this end we expand to
first order in τ (which does not give any error in the final
τ → 0 limit) and insert the operator P between annihila-
tion and creation operators

〈βt| exp(−τH)|βt−1〉 = exp
(
−1

2
tr(h + h0)τ

)
〈βt|P

− ĉ hT τ P ĉ†
∑

k

gkτ
1
2

ĉFK ĉP 1
2

ĉ†F †
K ĉ†|βt−1〉. (D.2)

Using the identity in the fermion Fock space we find

〈βt| exp(−τH)|βt−1〉 =
∫

dγ∗dγ E(γ∗, γ, β∗
t , βt−1)

× exp
(
−1

2
tr(h + h0)τ − γ∗h τγ

)

× exp

(∑
K

gKτ
1
2
γ FK γ

1
2
γ∗F †

Kγ∗
)

(D.3)

where the function E(γ∗, γ, β∗, β) is defined in (B.7). By
means of the Hubbard-Stratonovich transformation we
can make the exponents quadratic in the Grassmann vari-
ables and evaluate the Berezin integral

〈βt| exp(−τH)|βt−1〉 =
∫ ∏

K

da∗
KdaK exp(−a∗ · a)

× exp

{
1
2
tr ln

[
11 +

(
B∗

t +
∑
K1

√
gK1τ a∗

K1
FK1

)

×R−1

(
Bt−1 +

∑
K2

√
gK2τ aK2(FK2)

†
)

(RT )−1

]}

× det ρ exp
(
−1

2
tr(h + h0)τ

)
, (D.4)

where

ρ = 11 + h τ. (D.5)

Performing the integral over the auxiliary fields a∗
K , aK we

get

〈βt| exp(−τH)|βt−1〉 =
∫ ∏

K

da∗
KdaK exp(−a∗ · a)

× exp

{
1
2
tr ln

[
11 +

(
B∗

t +
∑
K1

√
gK1τ a∗

K1
FK1

)

×ρ−1

(
Bt−1 +

∑
K2

√
gK2τ aK2(FK2)

†
)

(ρT )−1

]}

× detρ exp
(
−1

2
tr(h + h0)τ

)
, (D.6)

The functional form of the composites partition function is

ZC =
∫ [

dβ∗dβ

2πi

]
exp (−Seff(β∗, β)) (D.7)

where Seff is given in equation (24).

Appendix E: General form of the coefficients
in the auxiliary Hamiltonian

I will use the definitions

TK1K2...K2l−1K2l
=

1
Ω

tr
[
CK1K2 ...CK2l−3K2l−2

×ΓBK2l−1 h B†
K2l

]

DK1K2...K2l−1K2l
=

1
2Ω

tr
[
CK1K2 ...CK2l−3K2l−2

×ΓBK2l−1F
†
K2l

]
, (E.1)

for l an arbitrary integer. Let me emphasize that only the
last factor in T involves the single particle kinetic energy
h, and only the last factor in D involves the form factors
of the potential. In the following I neglect the coupling to
external fields and I assume that if only 2 indices K1, K2

are different from zero, they must be equal in the E-terms.
The classical energy is

EC = Ω ν2T0000 +
∑
K

ΩgKν
1

2Ω
tr
[
C00F

†
KFK

]
(E.2)

The s-boson energy is given by

E0 = T00 − ν T0000 + Ωg0

[
−|D00|2

+2
(

n̂0

Ω
− ν

)
D00D0000

]

+
∑
K

gK
1

2Ω
tr
[
ΓB0F

†
KΓFKB†

0

]
. (E.3)

The terms E ,V are separated in their contributions from
the kinetic and potential terms in the fermion Hamiltonian

EK1K2 = Ekin
K1K2

+ Epot
K1K2

VK1,K2 = Vkin
K1,K2

+ Vpot
K1,K2

(E.4)
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whose expressions are

Ekin
K1,K2

= TK1K2 − ν TK1K200 − [TK100K2 + T0K2K10

−ν(T0K2K1000 + TK100K200]
n

Ω

Epot
K1K2

= 2
{

g0D00

[
DK2K100+D0K1K20−

n̂0

Ω
(D0K1K2000

+DK200K100)]
†
n̂0 +

∑
K �=0

n̂0 gK

[
DK1KD†

K200K

− n̂0

2Ω

(
D†

0K10KD0K20K + DK100KD†
K200K

)]}

Vkin
K1K2

= −2 [TK10K20 − ν TK10K2000]

Vpot
K1K2

= 2
{

Ωg0D00

[
DK20K10 −

n̂0

Ω
(D0K10K200

+DK10K2000)
†
]

+
∑
K �=0

ΩgK

[
DK1KD†

0K20K

− n̂0

Ω
D†

0K10KDK200K

]}
. (E.5)
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